
Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit 9 - 1

Floating-Point Unit

Introduction

This chapter will introduce you to the Floating-Point Unit (FPU) on the LM4F series devices. In

the lab we will implement a floating-point sine wave calculator and profile the code to see how

many CPU cycles it takes to execute.

Agenda

What is Floating-Point?...

Introduction to ARM® Cortex™-M4F and Peripherals

Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers

ADC12

Hibernation Module

USB

Memory

Floating-Point

BoosterPacks and grLib

Synchronous Serial Interface

UART

µDMA

Chapter Topics

9 - 2 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit

Chapter Topics

Floating-Point Unit ...9-1

Chapter Topics ...9-2

What is Floating-Point and IEEE-754? ...9-3

Floating-Point Unit ..9-4

CMSIS DSP Library Performance ...9-6

Lab 9: FPU ..9-7
Objective..9-7
Procedure ...9-8

 What is Floating-Point and IEEE-754?

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit 9 - 3

What is Floating-Point and IEEE-754?

What is Floating-Point?

 Floating-point is a way to represent real numbers on

computers

 IEEE floating-point formats:

 Half (16-bit)

 Single (32-bit)

 Double (64-bit)

 Quadruple (128-bit)

What is IEEE-754?...

What is IEEE-754?

FPU...

exponent = [10000110]2 = [134]10 fraction = [0.110100001000000000000000]2 = [0.814453]10
sign = (-1)0

= [1]10

Decimal Value = (-1)s x (1+f) x 2e-bias

= [1]10 x ([1]10 + [0.814453]10) x [2134-127]10

= [1. 814453]10 x 128

= [232.249]10

Symbol s e f

Example 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 X

Symbol Sign (s) Exponent (e) Fraction (f)

8 bits 23 bits1 bit

Decimal Value = (-1)s (1+f) 2e-bias

where: f = ∑[(b-i)2
-i] ∀ i ϵ (1,23)

bias = 127 for single precision floating-point

Floating-Point Unit

9 - 4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit

Floating-Point Unit

Floating-Point Unit (FPU)

 The FPU provides floating-point

computation functionality that is compliant

with the IEEE 754 standard

 Enables conversions between fixed-point

and floating-point data formats, and floating-

point constant instructions

 The Cortex-M4F FPU fully supports single-

precision:

 Add

 Subtract

 Multiply

 Divide

 Single cycle multiply and accumulate (MAC)

 Square root

Modes of Operation...

Modes of Operation

 There are three different modes of operation for the FPU:

 Full-Compliance mode – In Full-Compliance mode, the FPU

processes all operations according to the IEEE 754 standard in

hardware. No support code is required.

 Flush-to-Zero mode – A result that is very small, as described in the

IEEE 754 standard, where the destination precision is smaller in

magnitude than the minimum normal value before rounding, is

replaced with a zero.

 Default NaN (not a number) mode – In this mode, the result of any

arithmetic data processing operation that involves an input NaN, or

that generates a NaN result, returns the default NaN. (0 / 0 = NaN)

FPU Registers...

 Floating-Point Unit

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit 9 - 5

FPU Registers

 Sixteen 64-bit double-word

registers, D0-D15

 Thirty-two 32-bit single-word

registers, S0-S31

Usage...

FPU Usage

 The FPU is disabled from reset. You must enable it* before you

can use any floating-point instructions. The processor must be in

privileged mode to read from and write to the Coprocessor Access

Control (CPAC) register.

 Exceptions: The FPU sets the cumulative exception status flag in

the FPSCR register as required for each instruction. The FPU does

not support user-mode traps.

 The processor can reduce the exception latency by using lazy

stacking*. This means that the processor reserves space on the

stack for the FPU state, but does not save that state information to

the stack.

CMSIS...

* with a StellarisWare API function call

CMSIS DSP Library Performance

9 - 6 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit

CMSIS DSP Library Performance

CMSIS* DSP Library Performance

Source: ARM CMSIS Partner Meeting Embedded World, Reinhard Keil

 DSP Library Benchmark: Cortex M3 vs. Cortex M4 (SIMD + FPU)

 Fixed-point ~ 2x faster

 Floating-point ~ 10x faster

* - ARM® Cortex™ Microcontroller Software Interface Standard

Lab...

 Lab 9: FPU

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit 9 - 7

Lab 9: FPU

Objective

In this lab you will enable the FPU to run and profile floating-point code.

Lab 9: FPU

 Experiment with the FPU

 Profile floating-point code

Agenda ...

USB Emulation Connection

Lab 9: FPU

9 - 8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit

Procedure

Import Lab9

1. We have already created the Lab9 project for you with main.c, a startup file and all

necessary project and build options set. Maximize Code Composer and click Project

Import Existing CCS Eclipse Project. Make the settings shown below and click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

The code is fairly simple. We’ll use the FPU to calculate a full cycle of a sine wave

inside a 100 datapoint long array.

 Lab 9: FPU

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit 9 - 9

Browse the Code

2. In order to save some time, we’re going to browse existing code rather than enter it line

by line. Open main.c in the editor pane and copy/paste the code below into it.

#include <math.h>

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/fpu.h"

#include "driverlib/sysctl.h"

#include "driverlib/rom.h"

#ifndef M_PI

#define M_PI 3.14159265358979323846

#endif

#define SERIES_LENGTH 100

float gSeriesData[SERIES_LENGTH];

int dataCount = 0;

int main(void)

{

 float fRadians;

 ROM_FPULazyStackingEnable();

 ROM_FPUEnable();

ROM_SysCtlClockSet(SYSCTL_SYSDIV_4|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

 fRadians = ((2 * M_PI) / SERIES_LENGTH);

 while(dataCount < SERIES_LENGTH)

 {

 gSeriesData[dataCount] = sinf(fRadians * dataCount);

 dataCount++;

 }

 while(1)

 {

 }

}

3. At the top of main.c, look first at the includes, because there are a couple of new ones:

 math.h – the code uses the sinf() function prototyped by this header file

 fpu.h – support for Floating Point Unit

4. Next is an ifndef construct. Just in case M_PI is not already defined, this code will do

that for us.

5. Types and defines are next:

 SERIES_LENGTH – this is the depth of our data buffer

 float gSeriesData[SERIES_LENGTH] – an array of floats

SERIES_LENGTH long

 dataCount – a counter for our computation loop

Lab 9: FPU

9 - 10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit

6. Now we’ve reached main():

 We’ll need a variable of type float called fRadians to calculate sine

 Turn on Lazy Stacking (as covered in the presentation)

 Turn on the FPU (remember that from reset it is off)

 Set up the system clock for 50MHz

 A full sine wave cycle is 2 radians. Divide 2 by the depth of the array.

 The while() loop will calculate the sine value for each of the 100 values of the

angle and place them in our data array

 An endless loop at the end

Build, Download and Run the Code

7. Click the Debug button to build and download the code to the LM4F120H5QR flash

memory. When the process completes, click the Resume button to run the code.

8. Click the Suspend button to halt code execution. Note that execution was trapped in the

while(1) loop.

9. If your Memory Browser isn’t currently visible, Click View Memory Browser on the

CCS menu bar. Enter gSeriesData in the address box and click Go. In the box that

says Hex 32 Bit – TI Style, click the down arrow and select 32 Bit Float. You will see the

sine wave data in memory like the screen capture below:

 Lab 9: FPU

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit 9 - 11

10. Is that a sine wave? It’s hard to see from numbers alone. We can fix that. On the CCS

menu bar, click Tools Graph Single Time. When the Graph Properties dialog

appears, make the selections show below and click OK.

You will see the graph below at the bottom of your screen:

Profiling the Code

11. An interesting thing to know would be the amount of time it takes to calculate those 100

sine values.

On the CCS menu bar, click View Breakpoints. Look in the upper right area of the

CCS display for the Breakpoints tab.

Lab 9: FPU

9 - 12 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit

12. Remove any existing breakpoints by clicking Run Remove All Breakpoints. In the

main.c, set a breakpoint by double-clicking in the gray area to the left of the line

containing:

fRadians = ((2 * M_PI) / SERIES_LENGTH);

13. Click the Restart button to restart the code from main(), and then click the

Resume button to run to the breakpoint.

14. Right-click in the Breakpoints pane and Select Breakpoint (Code Composer Studio)

Count event. Leave the Event to Count as Clock Cycles in the next dialog and click OK.

15. Set another Breakpoint on the line containing while(1) at the end of the code. This

will allow us to measure the number of clock cycles that occur between the two

breakpoints.

16. Note that the count is now 0 in the Breakpoints pane. Click the Resume button to run to

the second breakpoint. When code execution reaches the breakpoint, execution will stop

and the cycle count will be updated. Our result is show below:

 Lab 9: FPU

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit 9 - 13

17. A cycle count of 34996 means that it took about 350 clock cycles to run each calculation

and update the dataCount variable (plus some looping overhead). Since the System Clock

is running at 50Mhz, each loop took about 7µS, and the entire 100 sample loop required

about 700 µS.

18. Right-click in the Breakpoints pane and select Remove All, and then click Yes to remove

all of your breakpoints.

19. Click the Terminate button to return to the CCS Edit perspective.

20. Right-click on Lab9 in the Project Explorer pane and close the project.

21. Minimize Code Composer Studio.

 You’re done.

Lab 9: FPU

9 - 14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit

